Isomer-specific vibronic structure of the 9-, 1-, and 2-anthracenyl radicals via slow photoelectron velocity-map imaging.

نویسندگان

  • Marissa L Weichman
  • Jessalyn A DeVine
  • Daniel S Levine
  • Jongjin B Kim
  • Daniel M Neumark
چکیده

Polycyclic aromatic hydrocarbons, in various charge and protonation states, are key compounds relevant to combustion chemistry and astrochemistry. Here, we probe the vibrational and electronic spectroscopy of gas-phase 9-, 1-, and 2-anthracenyl radicals (C14H9) by photodetachment of the corresponding cryogenically cooled anions via slow photoelectron velocity-map imaging (cryo-SEVI). The use of a newly designed velocity-map imaging lens in combination with ion cooling yields photoelectron spectra with <2 cm(-1) resolution. Isomer selection of the anions is achieved using gas-phase synthesis techniques, resulting in observation and interpretation of detailed vibronic structure of the ground and lowest excited states for the three anthracenyl radical isomers. The ground-state bands yield electron affinities and vibrational frequencies for several Franck-Condon active modes of the 9-, 1-, and 2-anthracenyl radicals; term energies of the first excited states of these species are also measured. Spectra are interpreted through comparison with ab initio quantum chemistry calculations, Franck-Condon simulations, and calculations of threshold photodetachment cross sections and anisotropies. Experimental measures of the subtle differences in energetics and relative stabilities of these radical isomers are of interest from the perspective of fundamental physical organic chemistry and aid in understanding their behavior and reactivity in interstellar and combustion environments. Additionally, spectroscopic characterization of these species in the laboratory is essential for their potential identification in astrochemical data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vibrational and electronic structure of the α- and β-naphthyl radicals via slow photoelectron velocity-map imaging.

Slow photoelectron velocity-map imaging (SEVI) spectroscopy has been used to study the vibronic structure of gas-phase α- and β-naphthyl radicals (C(10)H(7)). SEVI of cryogenically cooled anions yields spectra with <4 cm(-1) resolution, allowing for the observation and interpretation of congested vibrational structure. Isomer-specific photoelectron spectra of detachment to the radical ground el...

متن کامل

Slow photoelectron velocity-map imaging spectroscopy of the C9H7 (indenyl) and C13H9 (fluorenyl) anions.

High-resolution photoelectron spectra are reported of the cryogenically cooled indenyl and fluorenyl anions, C9H7(-) and C13H9(-), obtained with slow electron velocity-map imaging. The spectra show well-resolved transitions to the neutral ground states, giving electron affinities of 1.8019(6) eV for indenyl and 1.8751(3) eV for fluorenyl. Numerous vibrations are observed and assigned for the fi...

متن کامل

Vibronic structure in C2H and C2D from anion slow electron velocity-map imaging spectroscopy.

The C2H and C2D radicals are investigated by slow electron velocity-map imaging (SEVI) of the corresponding anions. This technique offers considerably higher resolution (<0.5 meV) than photoelectron spectroscopy. As a result, SEVI spectra of the two isotopomers yield improved electron affinities and reveal many new structures that are particularly sensitive to vibronic coupling between the grou...

متن کامل

Low-lying vibronic level structure of the ground state of the methoxy radical: Slow electron velocity-map imaging (SEVI) spectra and Köppel-Domcke-Cederbaum (KDC) vibronic Hamiltonian calculations.

A joint experimental and theoretical study is reported on the low-lying vibronic level structure of the ground state of the methoxy radical using slow photoelectron velocity-map imaging spectroscopy of cryogenically cooled, mass-selected anions (cryo-SEVI) and Köppel-Domcke-Cederbaum (KDC) vibronic Hamiltonian calculations. The KDC vibronic model Hamiltonian in the present study was parametrize...

متن کامل

Study of KrO- and KrO via slow photoelectron velocity-map imaging spectroscopy and ab initio calculations.

The high-resolution photoelectron spectrum of KrO(-) was obtained using slow electron velocity-map imaging (SEVI). The SEVI spectrum reveals numerous vibronic transitions between multiple electronic states of KrO(-) and KrO, both of which are open-shell species. Detailed assignments are made by comparison with theoretical simulations based on high level ab initio calculations and an atoms-in-mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 113 7  شماره 

صفحات  -

تاریخ انتشار 2016